Gluco-oligomers initially formed by the reuteransucrase enzyme of Lactobacillus reuteri 121 incubated with sucrose and malto-oligosaccharides.
نویسندگان
چکیده
The probiotic bacterium Lactobacillus reuteri 121 produces a complex, branched (1 → 4, 1 → 6)-α-D-glucan as extracellular polysaccharide (reuteran) from sucrose (Suc), using a single glucansucrase/glucosyltransferase (GTFA) enzyme (reuteransucrase). To gain insight into the reaction/product specificity of the GTFA enzyme and the mechanism of reuteran formation, incubations with Suc and/or a series of malto-oligosaccharides (MOSs) (degree of polymerization (DP2-DP6)) were followed in time. The structures of the initially formed products, isolated via high-performance anion-exchange chromatography, were analyzed by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry and 1D/2D (1)H/(13)C NMR spectroscopy. Incubations with Suc only, acting as both donor and acceptor, resulted in elongation of Suc with glucose (Glc) units via alternating (α1 → 4) and (α1 → 6) linkages, yielding linear gluco-oligosaccharides up to at least DP ~ 12. Simultaneously with the ensemble of oligosaccharides, polymeric material was formed early on, suggesting that alternan fragments longer than DP ~ 12 have higher affinity with the GTFA enzyme and are quickly extended, yielding high-molecular-mass branched reuteran (4 × 10(7) Da). MOSs (DP2-DP6) in the absence of Suc turned out to be poor substrates. Incubations of GTFA with Suc plus MOSs as substrates resulted in preferential elongation of MOSs (acceptors) with Glc units from Suc (donor). This apparently reflects the higher affinity of GTFA for MOSs compared with Suc. In accordance with the GTFA specificity, most prominent products were oligosaccharides with an (α1 → 4)/(α1 → 6) alternating structure.
منابع مشابه
Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase.
Lactobacillus reuteri strain 121 uses sucrose for synthesis of a unique, soluble glucan ('reuteran') with mainly alpha-(1-->4) glucosidic linkages. The gene (gtfA) encoding this glucansucrase enzyme had previously been characterized. Here, a detailed biochemical and molecular analysis of the GTFA enzyme is presented. This is believed to be the first report describing reuteransucrase enzyme kine...
متن کاملRational transformation of Lactobacillus reuteri 121 reuteransucrase into a dextransucrase.
Glucansucrase or glucosyltransferase (GTF) enzymes of lactic acid bacteria display high sequence similarity but catalyze synthesis of different alpha-glucans (e.g., dextran, mutan, alternan, and reuteran) from sucrose. The variations in glucosidic linkage specificity observed in products of different glucansucrase enzymes appear to be based on relatively small differences in amino acid sequence...
متن کاملHybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio.
The reuteransucrase enzymes of Lactobacillus reuteri strain 121 (GTFA) and L. reuteri strain ATCC 55730 (GTFO) convert sucrose into alpha-d-glucans (labelled reuterans) with mainly alpha-(1-->4) glucosidic linkages (50% and 70%, respectively), plus alpha-(1-->6) linkages. In the present study, we report a detailed analysis of various hybrid GTFA/O enzymes, resulting in the identification of spe...
متن کاملCharacterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides.
Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-ol...
متن کاملStructural determinants of alternating (α1 → 4) and (α1 → 6) linkage specificity in reuteransucrase of Lactobacillus reuteri
The glucansucrase GTFA of Lactobacillus reuteri 121 produces an α-glucan (reuteran) with a large amount of alternating (α1 → 4) and (α1 → 6) linkages. The mechanism of alternating linkage formation by this reuteransucrase has remained unclear. GTFO of the probiotic bacterium Lactobacillus reuteri ATCC 55730 shows a high sequence similarity (80%) with GTFA of L. reuteri 121; it also synthesizes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glycobiology
دوره 23 9 شماره
صفحات -
تاریخ انتشار 2013